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Synopsis 
The liine-teniperature dependence of the cohesive fraclure energy is deduced from ex- 

periments on a centrally cracked sheet of butadiene-acrylonitrile-acrylic acid viscoelastic 
terpolymer crosslinked with an epoxy curing agent. Analytic results based upon a cy- 
lindrical flaw model of the crack permit the segregation of the fracture energy time de- 
pendence from that of the relaxation modulus. 

INTRODUCTION 

The exact analysis of cohesive fracture in a material whose properties are 
time and rate dependent is, as a practical matter, almost impossible, 
especially for an arbitrary geometry with a general loading. On the other 
hand, there are important design considerations which require the calcula- 
tion of time and temperature-dependent fracture. Because the analytical 
determination of the fracture threshold is prohibitive for the general case, it 
was considered desirable to explore the possibility of modeling some repre- 
sentat,ive flaw for which the essential features of the time dependency would 
be preserved, thus leading at least to a phenomenologically correct expres- 
sion of the fracture. To this end, Williams’ proposed a spherical, or cy- 
lindrical, flaw geometry in an incompressible, linear viscoelastic material 
subjected to uniform tension far from the flaw. By an application of the 
thermodynamic power balance equation, which is essentially the time- 
dependent form of the classic Gr f i th  formulation, it was possible to deduce 
analytical results which appeared reasonable and, as might be expected, 
dependent upon the loading history. Subsequent applications of this idea 
for isothermal fatigue loading2 also led to results which were qualitatively 
in agreement with experimental results and even correlated well with 
microscopic failure measurements in terms of free radical production in 
nylon using electron paramagnetic resonance. 

In principle then it was demonstrated that the Gr f i th  energy balance 
approach could be extended to at least one realistic case of time-dependent 
fracture, specifically in an incompressible linearly viscoelastic material. 
For practical purposes, even as a temporary expedient, it was proposed that 
the time dependency factor deduced in this special problem could be used to 
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multiply the elastic criteria obtairied for sharp-edged cracks and for any 
general loading. 

To illustrate this point, the well-known Gr f i th  result for through crack 
length 2c in an elastic sheet of infinite extent subjected to equal biaxial 
loading gives the critical applied stress at fracture, uCr, as 

wherc yc is the energy required to create new cohesive fracture surface and 
D is the linear elastic tensile compliance (inverse modulus, E) .  By way of 
comparison, it was found that the critical stress for a through cylindrical 
flaw of diameter 2a in the same infinite sheet subjected to step-applied equal 
biaxial tension in a linear viscoelastic but incompressible material was 

in which D,,,(t) is the tensile creep compliance having the limit (glassy) 
value D,  at vanishingly small times, DcrP(O) = D,. Comparison of eqs. 
(1) and (2) readily shows the numerical similarity of the results in the 

glassy elastic region where they should be similar, i.e., in the ratio of dG: 
d 2 3  = 1.14, and that the time dependency for this particular loading is 
reflected by replacing the elastic compliance D by 2Dcr(t) - D,. 

Thus, in the absence of a better theory, one speculates that the time- 
dependent fracture criterion for a crack in a linear viscoelastic material 
might be closely represented, for the step loading, by 

While this type of correlation is encouraging, it is importarit to recognize 
and emphasize certain shortcomings as described in the original paper.' 
First of all, there is the obvious caution related to the incompressibility 
assumed in the model material for analytic simplicity, which was invoked 
in the Griffith case. Second, the time dependency factor was deduced for a 
uniform loading condition only, again for analytic simplicity, and some 
changes might be expected for a general triaxial loading, especially if im- 
posed in conjunction with a compressible material. Third, the flaw growth 
in the model was assumed to be circularly or spherically symmetric, which 
is frequently questionable, particularly for the flaw size history after initia- 
t i ~ n . ~  One should recall, however, that both Griffith5 and Sneddon6 also 
assumed symmetric and simultaneous crack extension in their work on two- 
dimensional and penny-shaped cracks, respectively. 

The fourth assumption which was incorporated in the original work is that 
to which the main point of this paper is directed. The derivations of all the 
previous results were based upon a time-independent value of the cohesive 
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fracture energy yc. As pointed out at the time, this assumption was im- 
posed primarily as a matter of analytic convenience, plus an apparent un- 
certainty or disagreement among physical chemists as to the basic micro- 
scopic behavior being represented. Without delving at this time into the 
rationale emerging over the past few years, it may be remarked that a 
rather extensive series of fracture experiments have now been completed. 
They show that the value of yc is not only time dependent, but also t ime 
temperature dependent in the WLIq-shift factor sense.' 

The appropriate extcrision of the basic theory is presented along with ail 
atlialysis of the experimental data. 

THEORETICAL ASPECTS 

l'or thc reasonably general case of fracture, the thermodynaniic power 
equation can be written as 

i = B + 2 D + k ' + S  (4) 

which states that the rate of work input to the system must equal the rate 
of storing free energy F and dissipation 2 0  plus the rates of converting 
kinetic energy R and surface energy s. Specifically, using the notation of 
Sokolnikoff18 one has 

s = yc(t)dA 
dt A 

where A ( t )  and V(t)  indicate the surface area and volume, respectively, both 
of which are time dependent during crack growth after fracture initiation. 

In  the previous analysis, as indicated earlier, it was convenient to assume 
that yc was not a timedependent function. It turns out, however, that if 
it is, the time rate of change of the energy to create new cohesive fracture 
surface is, from eq. (8), 

s = y(t)dA/dt.  (9) 

The incorporation of this flexibility into the analysis for either a cylindrical 
or spherical flaw in a linearly elastic, incompressible medium subiected to 
uniform tension at  infinity leads to a very simple modification of the earlier 
results. Specifically, one merely replaces in the former deductions the 
constant value of yc by its timedependent function y,(t). (In the former 
paper' the subscript c was omitted. Since then similar results have been 
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developed dealing with adhesive fracture.Y It has become necessary there- 
fore to distinguish between the energies to create new surfaces in these 
phenomenologically different situations represented by yc cohesive, and 
ya, adhesive, fracture.) 

For example, if a prescribed displacement, u(b,t) = uog(t) is applied at a 
large distance from the flaw (a << b -.* a), the thermodynamic criticality 
condition, in terms of the relaxation modulus Erez (t) ,  becomes 

u 2ay,(t) - - 4b6 (;>'it - 2 { a4 

where the solution b(t) = 0 corresponds to the initiation (zero growth) 
condition before fracture, and the vanishing of the bracketed term is the 
desired time-dependent fracture condition for determining a(t) .  

For the special case in which y ( t )  = 
c't, i.e., u(b,t) = uoc't, the fracture strain at  the flaw, neglecting the kinetic 
energy, 

Constant Strain Rate Loading. 

in which E,ez(2)(t)  is the second integral of the relaxation modulus up to the 
time t .  In particular, at fracture t = t,o, a(t0) = a, there is the explicit re- 
sult 

with 

Suppose it were possible to conduct an actual experiment upon this spe- 
cial spherical flaw configuration having a constant initial flaw radius a. 
One would then predict for the previous case, in which a constant yc was 
assumed, that if the experimentally measured failure strains ~~(ao,to) were 
multiplied by the square root of the weighted, 2t0-~ ,  second integral of the 
relaxation modulus, a constant value ( y c / a ) %  would result independent of 
the time of failure to. On the other hand, if (yc/%))(  did not experimentally 
result in a constant, one would infer that yc was (failure) time dependent. 
In principle, this experiment was performed. Because it was impossible to 
duplicate the spherical flaw experimentally, however, it was assumed that 
the viscoelastic effect would lead, in a general configuration subjected to 
constant displacement rate, to a form functionally similar to eq. (12), with 
perhaps a different constant of proportionality due to a different configura- 
tion of the flaw or multiaxiality of the loading. 



SUIWACE ENEHGY 1N COHESIVE FltACl'URE 739 

160 

120 

- 
I- 
0 
1 
t 
- 80 

W 

- 

40 

As will be described later, a biaxial strip containing an initial crack of 
length 2c0 was therefore selected, loaded to failure a t  several different con- 
stant displacement rates, and the strain at failure was suitably multiplied 
by the characteristic material property. It was found that the yc so de- 
duced was not constant, but did indeed vary with the failure time. 
Furthermore, tests were also repeated at  several temperatures and it was 
found that the yc values so deduced not only varied also with temperature, 
but moreover all the time- arid temperature-dependent data could be cor- 
related to a typical WLF temperature-reduced time dependency, yc = 

While i t  is obvious that the basic premise of a time-temperature-de- 
pendent cohesive energy density has not been completely established, the 
indirect proof and internal corisistency of the data are believed to be con- 
vincing. 

y,(t/al.). 

EXPERIMENTAL PROCEDURE AND RESULTS 

The material tested was a butadierieacryloriitrile-acrylic acid terpoly- 
mer crosslinked with an epoxy curing agent. From the mechanical stand- 
point, it exhibited rubbery behavior above 50°F in a coiistant strain test 
arid viscoelastic behavior between 50" and - 108°F. Equipment capa- 
bility limited linearity tests to strains less than 18%, but the material obeys 
Boltzmarin superposition to ISYO strain as determined by stress relaxatiori 
measurements a t  several strains (Fig. 1). In  addition, it was found that 
the moduli measured in uniaxial and biaxial stress states were interconvert- 
ible using the usual formulas of linear viscoelastic theory. lo 

Its height was 2b = 

1.68 in., thickness was 0.375 in., and it was bonded to strips of wood of 
The width of the strip specimen was 2w = 6.00 in. 

- 
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@ - - 

A 
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- STRAIN - 
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0 890 
0 1270 

LOG t/oT (minutes) 

Fig. 1. Linearity of the relaxation modulus A , l ( t ) .  The glass modulus E,  was inde  
peidently measured as 26,000 psi. Percentages shown are engineering strain. 
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co co - or - b w  
Fig. 2. Aspect ratio correction factors. 

nearly the same thickness as the test specimen by a butt end joint. A pre- 
cise line fracture 1.5 in. long was cut in the center of the specimen (2c0 = 
1.50). The wooden tab ends were held rigidly in a test assembly and dis- 
placed at a constant rate in an Instron testing machine. Elongation of the 
initial fracture was observed by two technicians, each making a mark on 
the load-time trace; the crack was also periodically photographed. A plot 
was then made of the crack length measured from the photos versus the 
time when the photo was taken. The resulting curve was extrapolated to 
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the intersection of the initial crack length. This point agreed well with 
the time of fracture initiation, to, observed by the technician. The rate 
of displacement, the load cell reading, and the test temperature were re- 
corded, from which the average stress and displacement in the direction of 
loading could be calculated. 

Moreover, 
the Griffith analysis, which applies to a small crack in an infinite medium, 
can be corrected for the effect of the finite width and finite height of the 
actual specimen by a factor F(co/zo, co/b) .  Thus one can calculate the 
specific cohesive elastic energy in the configuration as 

A stress analysis of the experimental geometry is available. 

in which vo/b = ev is the average axial strain imposed on the specimen. 
Actually, for the test geometry and the small crack being used, it was con- 
sidered sufficient to correct for these two effects separately rather than 
simultaneously because the correction factor for their combined interaction 
amounted essentially to a second-order effect. Hence a Westergaard fac- 

-13 -8 -3 
LOG t/o, (minutes) 

Fig. 3. Relaxation modulus and its first two integrals. 

2 
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TEMPERATURE O F  
Fig. 4. Comparison of empirical shift factors with WLF equation: 

modulus; (0) fracture energy; (-) WLF equation. 
(0 )  relaxation, 

- - 

-2 0 2 -4 
LOG t /aT (minutes) 

Fig. 5. Fracture energy: (0) 30°F; (El) O O F ;  ( 0 )  -30°F; (A) -50°F. 
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tor," Fl(co/w), was used for finite width and a Knauss factorlZ as corrected 
by Rice,13 called F2(c0/b), was used for the height, i.e., F(co/w, Q /b )  = 
F1(co/w)Fz(co/b). The separate correction factors, which depend on the 
aspect ratio of the specimen, are given in Figure 2. E is the elastic tensile 
modulus. 

Note next that this functional form is essentially similar to that of the 
viscoelastic case, l2  viz., 

rc/% = [(2to-2)Eret(2)(to) I ce2(%, to) ( 1 3  
in which the equivalent viscoelastic modulus [2&,-2E,,2(2' (to) ] replaces the 
elastic value E.  Hence, assuming the spherical theory gives us the correct 
time dependence for the viscoelastic extension, we assume the viscoelastic 
equation for the specimen with a crack rather than spherical flaw is 

The relaxation modulus for our material was measured in actual relaxa- 
tion tests on uniaxial bars (rather than being calculated from constant 
strain rate data) and is presented as a function of reduced time t/uT in 
Figure 3 along with its normalized first two integrals. (It may be noted 
that there is not a very large difference between the successive normalized 
multiple integrals of the modulus, which justifies to some extent the use of 
merely EreZ(t) as an approximate ad hoc engineering extension of the elastic 
fracture formulas to viscoelastic media, regardless of the load history.) 
The temperature shift factor uT is shown in Figure 4. 

The experimental data summarized in Table I, in which each data point 
is the average of at least three tests, has been reduced using eq. (16) in 
order to calculate y&). The same 
WLF shift factor (aT) as deduced for the relaxation modulus is seen to shift 
the cohesive energy data into a smooth curve. The Tobolsky formula1' 
was used, in which a measured glass transition temperature, To = 7 108"F, 
was determined from thermal expansion measurement : 

These data are shown on Figure 5. 

log1eaT = -17.44[(T - T,)/(51.6 + T - To)]. (17) 
Figure 5 in conjunction with the shift factor therefore gives the t imo 

temperature dependence of the specific cohesive energy density. 

DISCUSSION 
There are a few comments to be emphasized. First, one should recog- 

nize the shortcomings in an analysis wherein a cylindrical flaw model of a 
crack has been incorporated. It would be an improvement to obtain simi- 
lar results using an actual crack configuration. So far, however, analytical 
difficulties have been encountered. Second, independent plane stress ex- 
periments have shown that different initial crack lengths lead to essentially 
the same time dependence in the cohesive energy, providing the crack is 
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somewhat longer than the thickness of the specimen.I6 Third, the kinetics 
of the process during cohesive failure are presumably the same as during 
deformation, because the time-temperature shift factor is the same for 
y,(t /uT) as for ETel(t/uT).  Finally, a similar investigation for the case of 
a filled material would be interesting because here the additional variable 
of adhesive debonding between the binder and filler is involved; presum- 
ably a different behavior of ~ ~ ( t / u ~ )  would result. 
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